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Abstract 
The internet connectivity of client software (e.g., apps running on phones and PCs), web sites, 

and online services provide an unprecedented opportunity to evaluate ideas quickly using 

controlled experiments, also called A/B tests, split tests, randomized experiments, 

control/treatment tests, and online field experiments.  Unlike most data mining techniques for 

finding correlational patterns, controlled experiments allow establishing a causal relationship 

with high probability.  Experimenters can utilize the Scientific Method to form a hypothesis of 

the form “If a specific change is introduced, will it improve key metrics?” and evaluate it with 

real users. 

The theory of a controlled experiment dates back to Sir Ronald A. Fisher’s experiments at the 

Rothamsted Agricultural Experimental Station in England in the 1920s, and the topic of offline 

experiments is well developed in Statistics (Box 2005).  Online Controlled Experiments started 

to be used in the late 1990s with the growth of the Internet.  Today, many large sites, including 

Amazon, Bing, Facebook, Google, LinkedIn, and Yahoo! run thousands to tens of thousands of 

experiments each year testing user interface (UI) changes, enhancements to algorithms (search, 

ads, personalization, recommendation, etc.), changes to apps, content management system, 

etc.  Online controlled experiments are now considered an indispensable tool, and their use is 

growing for startups and smaller websites. Controlled experiments are especially useful in 

combination with Agile software development (Martin 2008, Rubin 2012), Steve Blank’s 

Customer Development process (Blank 2005), and MVPs (Minimum Viable Products) 

popularized by Eric Ries’s Lean Startup (Ries 2011).   

 

Motivation and Background 
Many good resources are available with motivation and explanations about online controlled 

experiments (Siroker and Koomen 2013, Goward 2012, McFarland 2012, Schrage 2014, Kohavi, 

Longbotham and Sommerfield, et al. 2009, Kohavi, Deng and Longbotham, et al. 2014, Kohavi, 

Deng and Frasca, et al. 2013).   

http://bit.ly/onlineControlledExperiments
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We provide a motivating visual example of a controlled experiment that ran at Microsoft’s Bing. 

The team wanted to add a feature allowing advertisers to provide links to the target site. The 

rationale is that this will improve ads quality by giving users more information about what the 

advertiser’s site provides and allow users to directly navigate to the sub-category matching 

their intent. Visuals of the existing ads layout (control) and the new ads layout (treatment) with 

site links added are shown in Figure 1 below. 

 

Figure 1: Ads with site link experiment. Treatment (bottom) has site links. The difference might 
not be obvious at first but it is worth tens of millions of dollars 

In a controlled experiment, users are randomly split between the variants (e.g., the two 

different ads layouts) in a persistent manner (a user receives the same experience in multiple 

visits). Their interactions with the site are instrumented and key metrics computed. In this 

experiment, the Overall Evaluation Criterion (OEC) was simple: increasing average revenue per 

user to Bing without degrading key user engagement metrics. Results showed that the newly 

added site links increased revenue, but also degraded user metrics and Page-Load-Time, likely 

because of increased vertical space usage.  Even offsetting the space by lowering the average 

number of mainline ads shown per query, this feature improved revenue by tens of millions of 

dollars per year with neutral user impact, resulting in extremely high ROI (Return-On-

Investment). 

Running online controlled experiments is not applicable for every organization. We begin with 

key tenets, or assumptions, an organization needs to adopt (Kohavi, Deng and Frasca, et al. 

2013). 

Tenet 1: The Organization wants to make data-driven decisions and has formalized the 

Overall Evaluation Criterion (OEC) 

You will rarely hear someone at the head of an organization say that they don’t want to be 

data-driven, but measuring the incremental benefit to users from new features has costs, and 

objective measurements typically show that progress is not as rosy as initially envisioned.  In 

any organization there are many important metrics reflecting revenue, costs, customer 

satisfaction, loyalty, etc. and very frequently an experiment will improve one but hurt another 

of these metrics. Having a single metric, which we call the Overall Evaluation Criterion, or OEC, 

that is at a higher level that these and incorporates the tradeoff among them is essential for 

organizational decision-making. 
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An OEC has to be defined and it should be measurable over relatively short durations (e.g., two 

weeks). The hard part is finding metrics that are measurable in the short-term that are 

predictive of long-term goals. For example, “Profit” is not a good OEC, as short-term theatrics 

(e.g., raising prices) can increase short-term profit, but hurt it in the long run. As shown in 

Trustworthy Online Controlled Experiments: Five Puzzling Outcomes Explained (Kohavi, Deng 

and Frasca, et al. 2012), market share can be a long-term goal, but it is a terrible short-term 

criterion: making a search engine worse forces people to issue more queries to find an answer, 

but, like hiking prices, users will find better alternatives long-term. Sessions per user, or repeat 

visits, is a much better OEC for a search engine. Thinking of the drivers of lifetime value can lead 

to a strategically powerful OEC (Kohavi, Longbotham and Sommerfield, et al. 2009). We cannot 

overemphasize the importance of coming up with a good OEC that the organization can align 

behind.  

Tenet 2: Controlled experiments can be run and their results are trustworthy  

Not every decision can be made with the scientific rigor of a controlled experiment. For 

example, you cannot run a controlled experiment on the possible acquisition of one company 

by another. Hardware devices may have long lead times for manufacturing and modifications 

are hard, so controlled experiments with actual users are hard to run on a new phone or tablet. 

For customer-facing web sites and services, changes are easy to make through software, and 

running controlled experiments is relatively easy. 

Assuming you can run controlled experiments, it is important to ensure their trustworthiness. 

When running online experiments, getting numbers is easy; getting numbers you can trust is 

hard, and we have had our share of pitfalls and puzzling results (Kohavi, Deng and Frasca, et al. 

2012, Kohavi, Longbotham and Walker 2010, Kohavi and Longbotham 2010).  

Tenet 3: We are poor at assessing the value of ideas 

Features are built because teams believe they are useful, yet in many domains most ideas fail 

to improve key metrics. Only one third of the ideas tested on the Experimentation Platform at 

Microsoft improved the metric(s) they were designed to improve      (Kohavi, Crook and 

Longbotham 2009). Success is even harder to find in well-optimized domains like Bing. Jim 

Manzi (Manzi 2012) wrote that at Google, only “about 10 percent of these [controlled 

experiments, were] leading to business changes.” Avinash Kaushik wrote in his Experimentation 

and Testing primer (Kaushik 2006) that “80% of the time you/we are wrong about what a 

customer wants.” Mike Moran (Moran 2007, 240) wrote that Netflix considers 90% of what 

they try to be wrong. Regis Hadiaris from Quicken Loans wrote that “in the five years I've been 

running tests, I'm only about as correct in guessing the results as a major league baseball player 

is in hitting the ball. That's right - I've been doing this for 5 years, and I can only "guess" the 

outcome of a test about 33% of the time!” (Moran 2008). Dan McKinley at Etsy wrote (McKinley 

2013) “nearly everything fails” and “it's been humbling to realize how rare it is for them 

[features] to succeed on the first attempt. I strongly suspect that this experience is universal, 
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but it is not universally recognized or acknowledged.” Finally, Colin McFarland wrote in the 

book Experiment! (McFarland 2012, 20) “No matter how much you think it’s a no-brainer, how 

much research you’ve done, or how many competitors are doing it, sometimes, more often 

than you might think, experiment ideas simply fail.” 

Not every domain has such poor statistics, but most who have run controlled experiments in 

customer-facing web sites and applications have experienced this humbling reality: we are poor 

at assessing the value of ideas, and that is the greatest motivation for getting an objective 

assessment of features using controlled experiments. 

 

Structure of an Experimentation System 
Elements of an Experimentation System 

The simplest experimental setup is to evaluate a factor with two levels, a control (version A) 

and a treatment (version B). The control is the normally the default version and the treatment 

is the change that is tested.  Such a setup is commonly called an A/B test.  It is commonly 

extended by having several levels, often referred to as A/B/n split tests.   An experiment with 

multiple factors is referred to as Multivariable (or Multivariate). 

 

Figure 1 shows the high level structure of an A/B experiment. In practice, one can assign any 

percentages to the treatment and control but 50% provides the experiment the maximum 

statistical power, and we recommend maximally powering the experiments after a ramp-up 

period at smaller percentages to check for egregious errors. 

In a general sense, the analysis will test if the statistical distribution of the treatment is different 

from that of the control. In practice, the most common test is whether the two means are equal 

or not. For this case, the effect of version B (or treatment effect) is defined to be 

Figure 1 High-level structure of an online experiment 
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𝐸(𝐵) =  �̅�𝐵 −  �̅�𝐴     (1) 

Where X is a metric of interest and �̅�𝐵 is the mean for variant B. However, for interpretability, 

the percent change is normally reported with a suitable (e.g. 95%) confidence interval. See, for 

example (Kohavi, Longbotham and Sommerfield, et al. 2009). 

Control of extraneous factors and randomization are two essential elements of any 

experimentation system. Any factor that may affect an online metric is either a test factor (one 

you intentionally vary to determine its effect) or a non-test factor. Non-test factors could either 

be held fixed, blocked, or randomized.  Holding a factor fixed can impact external validity, and is 

thus not recommended.  For example, if weekend days are known to be different from week 

days, you could run the experiment only on weekdays (or weekends) but it would be better to 

have complete weeks in the experiment for better external validity. Blocking (e.g., pairing) can 

reduce the variance relative to randomization, and is recommended when experimentation 

units in each block are more homogenous than between blocks.  For example, if the 

randomization unit is a user page view, then blocking by weekend/weekday can reduce the 

variance of the effect size, leading to higher sensitivity.  Time is a critical non-test factor, and 

because many external factors vary with time, it is important to randomize over time by 

running the control and treatment(s) concurrently with a fixed percentage to each throughout 

the experiment.  (If the relative percentage changes you will be subject to Simpson’s paradox 

(Malinas 2009, Kohavi and Longbotham 2010)). Controlling a non-test factor assures it will have 

equal influence on the control and treatment, hence not affecting the estimate of the 

treatment effect. 

Experimentation architecture alternatives 

Controlled experiments on the web: survey and practical guide (Kohavi, Longbotham and 

Sommerfield, et al. 2009) provides a review of many architecture alternatives. The main three 

components of an experimentation capability involve the randomization algorithm, the 

assignment method (i.e. how the randomly assigned experimental units are given the variants) 

and the data path (which captures raw observation data and processes it).  Tang et al. (2010) 

give a detailed view of the infrastructure for experiments as carried out by Google. 

To validate an experimentation system, we recommend that A/A tests be run regularly to test 

that the experimental setup and randomization mechanism is working properly. An A/A test, 

sometimes called a Null Test (Peterson 2004), exercises the experimentation system, assigning 

users to one of two groups, but exposes them to exactly the same experience. An A/A test can 

be used to (i) collect data and assess its variability for power calculations, and (ii) test the 

experimentation system (the Null hypothesis should be rejected about 5% of the time when a 

95% confidence level is used)  (Kohavi, Longbotham and Sommerfield, et al. 2009). (Martin 

2008) 

Planning Experiments 
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Several aspects of planning an experiment are important: estimating adequate sample size, 

gathering the right metrics, tracking the right users, randomization unit. 

Sample size. Sample size is determined by the percent of users admitted into the experiment 

variants (control and treatments) and how long the experiment runs.  As an experiment runs 

longer, more visitors are admitted into the variants, so sample sizes increase.  Experimenters 

can choose the relative percent of visitors that are in the control and treatment which affects 

how long you will need to run the experiment. Several authors (Deng, Xu, et al. 2013, Kohavi, 

Longbotham and Sommerfield, et al. 2009) have addressed the issue of sample size and length 

of experiment in order to achieve adequate statistical power for an experiment, where 

statistical power of an experiment is the probability of detecting a given effect when it exists 

(technically, the probability of correctly rejecting the null hypothesis when it is false). In 

addition to planning an experiment for adequate power, a best practice is to run the 

experiment for at least one week (to capture a full weekly cycle) and then multiple weeks 

beyond that.  When “novelty” or “primacy” effects are suspected (i.e., the initial effect of the 

treatment is not the same as the long-term effect), the experiment should be run long enough 

to estimate the asymptotic effect of the treatment. Finally, measuring the effect on high-

variance metric, such as loyalty (sessions/user), will generally require more users than for other 

metrics (Kohavi, Deng and Frasca, et al. 2012). 

Observations, Metrics, and the OEC. Gathering observations (i.e., logging events) so that the 

right metrics can be computed is critical to successful experimentation. Whenever possible and 

economically feasible, one should gather as many observations as possible that relate to 

answering potential questions of interest, whether user related or performance related (e.g., 

latency, utilization, crashes).  We recommend computing many metrics from the observations 

(e.g., hundreds) because they can give rise to surprising insights, although care must be taken 

to correctly understand and control for the false positive rate  (Kohavi, Deng, et al. 2013, 

Hochberg and Benjamini 1995).  While having many metrics is great for insights, decisions 

should be made using the Overall Evaluation Criterion (OEC).   See Tenet 1 earlier for a 

description of the OEC. 

Triggering. Some treatments may be relevant to all users who come to a website. However, for 

many experiments, the difference introduced is relevant for a subset of visitors (e.g., a change 

to the checkout process, which only 10% of visitors start). In these cases, it is best to include 

only those visitors who would have experienced a difference in one of the variants (this 

commonly requires counter-factual triggering for the control).  Some architectures (Kohavi, 

Longbotham and Sommerfield, et al. 2009) trigger users into an experiment either explicitly or 

using lazy (or late-bound) assignment.  In either case, the key is to analyze only the subset of 

the population that was potentially impacted. Triggering reduces the variability in the estimate 

of treatment effect, leading to more precise estimates.  Because the diluted effect is often of 

interest, the effect can then be diluted (Deng and Hu 2015). 
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Randomization Unit. Most experiments use the visitor as the randomization unit for several 

reasons. First, for many changes being tested it is important to give the user a consistent online 

experience. Second, most experimenters evaluate metrics at the user level, such as sessions per 

user and clicks per user.  Ideally, the randomization by the experimenter is by a true user, but in 

many unauthenticated sites a cookie stored by the user’s browser is used, so in effect, the 

randomization unit is the cookie. In this case, the same user will appear to be different users if 

she comes to the site using a different browser, different device or having deleted her cookie 

during the experiment. The next section will discuss how the choice of randomization unit 

affects how the analysis of different metrics should be carried out. The randomization unit can 

also affect the power of the test for some metrics. For example, Deng et al. (2011) showed that 

the variance of page level metrics can be greatly reduced if randomization is done at the page 

level, but user metrics cannot be computed in such cases.   In social-network settings, spillover 

effects violate the standard no-interference assumption, requiring unique approaches, such as 

clustering (Ugander, et al. 2013). 

Analysis of experiments 

If an experiment is carried out correctly, the analysis should be a straight-forward application of 

well-known statistical methods. Of course, this is much preferred than trying to recover from a 

poor experimental design or implementation. 

Confidence Intervals. Most reporting systems will display the treatment effect (actual and 

percent change) along with suitable confidence intervals. For reasonably large sample sizes, 

generally considered to be thousands of users in each variant the means may be considered to 

have normal distributions (See Kohavi et al. (2014) for detailed guidance) making the formation 

of confidence intervals routine. However, care must be taken to use the Fieller theorem 

formula (Fieller 1954) for percent effect since there is a random quantity in the denominator. 

Decision-making. A common approach to deciding if the treatment is better than the control is 

the usual hypothesis-testing procedure, assuming the Normal distribution if the sample size is 

sufficient (Kohavi, Longbotham and Sommerfield, et al. 2009). Alternatives to this when 

normality cannot be assumed are transformations of the data (Bickel and Doksum 1981) and 

nonparametric or resampling/permutation methods to determine how unusual the observed 

sample is under the null hypothesis (Good 2005). When conducting a test of whether the 

treatment had an effect or not (e.g., a test of whether the treatment and control means are 

equal) a p value of the statistical test is often produced as evidence. More precisely, the p value 

is the probability to obtain an effect equal to or more extreme than the one observed, 

presuming the null hypothesis of no effect is true (Biau, Jolles and Porcher 2010). 

 

Another alternative is to use Bayes’ theorem to calculate the posterior odds that the treatment 

had a positive impact versus the odds it had no impact (Stone 2013). 



8 
 

Analysis Units. Metrics may be defined with different analysis units, such as user, session or 

other appropriate basis. For example, an ecommerce site may be interested in metrics such as 

revenue per user, revenue per session or revenue per purchaser. Straightforward statistical 

methods (e.g. the usual t-test and variants) apply to any metric that has user as its analysis unit 

if users are the unit of randomization since users may be considered independent. However, if 

the analysis unit is not the same as the randomization unit, the analysis units may not be 

considered independent and other methods need to be used to calculate standard deviation or 

to compare treatment to control. Bootstrapping (Efron 1993) and the delta method (Casella 

and Berger 2001) are two commonly used methods when the analysis unit is not the same as 

the randomization unit.  

Variance Reduction. Increasing the sample size is one way to increase power. However, online 

researchers are continually looking for ways to increase the power of their experiments while 

shortening, or at least not extending, the length of the tests. One way to do this is to use 

covariates such as pre-experiment user metrics, user demographics, location, equipment, 

software, connection speed, etc. (Deng, Xu, et al. 2013) gave an example where a 50% 

reduction in variance for a metric could be achieved by using only the pre-experiment metric 

values for the users. 

Diagnostics. In order to assure the experimental results are trustworthy every experimentation 

system should have some diagnostic tools built-in. Graphs of the number of users in each 

variant, metric means and treatment effects over time will help the researcher see unexpected 

problems or upsets to the experiment. In addition, diagnostic tests that trigger an alarm when 

an expected condition is not met should be built in. One critical diagnostic test is the “sample 

ratio mismatch” or SRM. A simple statistical test checks if the actual percentage for each variant 

is close enough to the planned percentages. We have found this one diagnostic is frequently 

the “canary in the coal mine” for online experiments. There are many possible ways an 

experiment can skew the number of visitors to one variant or another and many of them will 

cause a large bias in the treatment effect.  Another common useful test is that the 

performance, or latency, of the two versions is similar when expected to be so.  It some cases 

the treatment may be slower due to caching issues (e.g., cold start) or if the variant are 

unbalanced (e.g., 90%/10%), a shared resource like an LRU cache (Least Recently Used) will give 

an advantage to the larger variant (Kohavi and Longbotham 2010). When an experimentation 

platform allows overlapping experiments, a diagnostic to check for interactions between 

overlapping experiments is also helpful. Anytime an alarm or graph indicates a potential 

problem the researcher should investigate to determine the source. 

Robot Removal. Robots must be removed from any analysis of web data since their activity can 

severely bias experiment results, see Kohavi et al (2009). Some robots may slip through robot 

filtering techniques and should be considered when diagnostics suggest there may be a 

problem with the experiment. 

SUMMARY 
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The internet and online connectivity of client software, websites, and online services provide a 

fertile ground for scientific testing methodology. Online experimentation is now recognized as a 

critical tool to determine whether a software or design change should be made. The benefit of 

experimenting online is the ability to set up a software platform for conducting the tests, which 

makes experimentation much more scalable and efficient and allows evaluating ideas quickly. 
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