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ABSTRACT
A/B tests (or randomized controlled experiments) play an integral
role in the research and development cycles of technology com-
panies. As in classic randomized experiments (e.g., clinical trials),
the underlying statistical analysis of A/B tests is based on assuming
the randomization unit is independent and identically distributed
(i.i.d.). However, the randomization mechanisms utilized in online
A/B tests can be quite complex and may render this assumption in-
valid. Analysis that unjustifiably relies on this assumption can yield
untrustworthy results and lead to incorrect conclusions. Motivated
by challenging problems arising from actual online experiments,
we propose a new method of variance estimation that relies only on
practically plausible assumptions, is directly applicable to a wide
of range of randomization mechanisms, and can be implemented
easily. We examine its performance and illustrate its advantages
over two commonly used methods of variance estimation on both
simulated and empirical datasets. Our results lead to a deeper un-
derstanding of the conditions under which the randomization unit
can be treated as i.i.d. In particular, we show that for purposes of
variance estimation, the randomization unit can be approximated
as i.i.d. when the individual treatment effect variation is small;
however, this approximation can lead to variance under-estimation
when the individual treatment effect variation is large.

Keywords: Causal inference; randomization unit; random ef-
fect; delta method; asymptotic variance

1. INTRODUCTION
The statistical concept of randomization is nearly one hundred

years old [26; 12; 13]. Randomized controlled experiments are of-
ten considered the gold standard of causal inference [30]. Online
controlled experiments (or A/B tests) have long been utilized by
technology companies (e.g., Amazon, Facebook, Google, LinkedIn,
Microsoft, Netflix, Pandora, Twitter, Uber, etc.) to aid in data-
driven decision making [19; 33; 3; 14; 35; 22]. To quote [18], “un-
like most data mining techniques for finding correlational patterns,
controlled experiments allow establishing a causal relationship [be-
tween a treatment and an outcome of interest] with high probabil-
∗The first two authors contributed equally to this work.
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ity.” Indeed, as pointed out in [8], A/B testing is widely recognized
as “a basic pillar of Data Science.”

In A/B test platforms at scale, the entire life cycle of an exper-
iment (including traffic allocation, randomization, data collection,
and analysis) is streamlined using an automated pipeline. It is of
great importance that each component of this pipeline is trustwor-
thy: Faulty design, software bugs, or flawed analysis can cast doubt
on the validity of all results produced by the platform. In this paper
we focus on making the statistical analysis of A/B tests more trust-
worthy by proposing a generalized method of variance estimation
that is largely independent of the randomization mechanism.

A metric M = Y
obs

is typically defined as the average of ob-
servations Yi, i = 1, . . . ,N.1 In an A/B test, traffic is assigned to
either the treatment or the control. Let Y

obs
T and Y

obs
C be the point

estimates of a metric from the treatment and the control, respec-
tively. τ̂ = Y

obs
T − Y

obs
C is the estimated difference in the metric

between the treatment and the control. Because proper randomiza-
tion guarantees Ceteris paribus (other things equal), it is intuitive
(and rigorously provable under Rubin’s causal model [16]) that τ̂ is
an unbiased estimator for the average treatment effect τ:

τ = E
(̂
τ
)

= E
(
Y

obs
T − Y

obs
C

)
.

A fundamental problem in A/B testing is to determine if τ , 0,
i.e. to determine if there is a true nonzero treatment effect. On
the surface, an A/B test is a natural extension of a classic com-
pletely randomized experiment, for which two-sample t-tests are
used [16]. However, there are two major differences. First, on-
line A/B tests typically have much larger sample sizes than classic
randomized experiments, and as a result the central limit theorem
[34; 7; 17] guarantees τ̂ will approximately follow a normal dis-
tribution. Therefore statistical tests based on an asymptotic distri-
bution of τ̂ focus on estimating its asymptotic variance, and a z-
test can substitute for a t-test in analyses. The second difference is
more fundamental. In classic completely randomized experiments,
observations Yi are assumed to be independent and identically dis-
tributed (i.i.d.)2, and observations from the treatment and control
are assumed to be independent as well. Estimating the variance of
τ̂ is then straightforward: The variance is simply the sum of the
variances of Y

obs
T and Y

obs
C , both of which can be estimated using

1Most metrics used in A/B tests are averages, although percentile-
based metrics are common in areas such as performance. This pa-
per only focuses on average-based metric.
2This is the super population perspective in which observations are
assumed to be drawn from a super population. The finite popula-
tion viewpoint is slightly different but provides similar result. We
adopt the super population perspective in this paper. See [1; 16] for
comparison and discussion.

641

http://dx.doi.org/10.1145/3018661.3018677


the standard sample variance formula.

1
N − 1

N∑
i=1

(Yi − Y)2. (1)

Online A/B tests can be much more complex. Observations Yi can
be correlated, and, depending on the randomization mechanism,
observations from treatment and control can also be correlated,
rendering the problem of variance estimation challenging. Under
what conditions can we assume Yi or observations at a certain unit
are i.i.d. for purposes of variance calculation? What justifies the
i.i.d. assumption and what invalidates it? Does randomization play
a role here? If so, how? What can be done if the randomization
mechanism is unknown?

This paper is motivated by the above challenges with a hope that
a few simple results can be applied to a wide range of variance esti-
mation problems that arise from online A/B tests. We prefer analyt-
ical and closed-form solution to computationally intensive methods
such as bootstrapping [11; 15; 5]. It is worth noting that the boot-
strap method does not circumnavigate the fundamental i.i.d. as-
sumption because it relies on assuming that the unit sampled with
replacement is i.i.d. in the ground truth data-generating-process.

To structure our discussion, we present three questions in order
of increasing difficulty. We provide solutions for each of them.
These challenging questions arise from A/B tests brought to the
authors by our colleagues.

Question 1. Under what conditions can users be treated as i.i.d.?
In user-randomized A/B tests, users are commonly treated as i.i.d.,
but users are correlated by many factors such as gender, age group,
location, organization, etc. Does this invalidate the user-level i.i.d.
assumption?

Question 1 reveals a gap between theory and practice. In theory, we
would start with a data generating process (DGP) in which users
are defined as i.i.d. by the design of the DGP. In practice, there
are always questions about the plausibility of the DGP. In online
experimentation, a user is often regarded as the basic unit of au-
tonomy and is therefore used as the randomization unit. Users are
commonly treated as i.i.d. without much questioning. We reveal a
deeper connection between question 1 and the concept of external
validity in Section 3.

A more general rule of thumb says that we can always treat the
randomization unit as i.i.d. for purposes of variance calculation.
We name this the randomization unit principle (RUP). For exam-
ple, when an experiment is randomized by user, page-view [10],
cookie-day [33] or session/visit, RUP suggests it is reasonable to
assume observations at each of these levels respectively are i.i.d..
This assumption simplifies variance estimation because when the
analysis unit of a metric is defined at the same level as the random-
ization unit, e.g. page level metrics in page-view randomized ex-
periments, the standard sample variance formula (1) suffices. When
the analysis unit is at a level lower than the randomization unit (e.g.
page level metrics in a user randomized experiment) and the ran-
domization unit is i.i.d., the delta method [34; 10] provides the cor-
rect estimation of variance. Although no previous published work
has explicitly stated RUP, it is widely used in analyses of A/B tests
in the technology industry, and the importance of assuming the ran-
domization unit is i.i.d. has been alluded to previously [33; 5; 20].
However, there is nothing inherent to the randomization process
that justifies treating randomization unit level observations as i.i.d.
When we randomize by page-view, are page-views from a single
user not correlated? This begs the question of whether RUP is gen-
erally true.

Question 2. Under what conditions does RUP hold and how
reliable is it as an approximation when these conditions are not
met?

Most server side A/B tests have simple randomization mecha-
nisms, which are typically implemented by applying a hash func-
tion on the id strings of a chosen randomization unit [19; 3]. For
mobile apps, the mechanism of randomization can be much more
complicated because mobile app clients are not always connected
to the internet. Client side randomization is often done via polling,
a process in which a client periodically requests a new configura-
tion from the server when connected to a low cost data source such
as WiFi [32]. Although randomization on the server side can still
be implemented using a hash function on the randomization unit
id, the server has no control over when a client will connect and
fetch the most recent treatment assignment. Moreover, after fetch-
ing the new treatment assignment, the client may not immediately
comply with the new treatment experience. For example, an ex-
periment designer might want to randomize client apps every hour
as a surrogate for randomization by client session. A true client
session defined from app-open to app-close might extend for days
or weeks if a user keeps the app open in the background and never
fully closes the app. Hourly randomization is preferred when activ-
ities are clustered by actual-usage sessions, and each usage session
typically does not last longer than a hour. Of course, to prevent a
sudden change of experience for end users, when a client fetches a
new treatment assignment and the app is in active use, the client app
should be allowed to delay applying the new configuration. Ana-
lyzing mobile A/B tests becomes challenging because there can be
a huge gap between the designed behavior, e.g. randomization by
hour, and the actual experience on the client side due to the network
connection issue and the delayed configuration refresh issue. This
complicated or perhaps unknown randomization mechanism leads
to Question 3.

Question 3. How do we estimate the asymptotic variance of τ̂
when the randomization mechanism is unknown? Is this estimation
feasible with only practically plausible assumptions?

By addressing these three challenging questions, we make the
following original contributions in this paper:

1. We are the first to study the RUP i.i.d. assumption in depth
with a focus on real-life A/B tests. Our results rely only on
conditions that generally hold for large-scale A/B tests.

2. We show that RUP is exactly correct when there is no vari-
ance in the treatment effect. However, variance under-estimation
occurs when there exists significant variance in treatment
effect. We give the exact formula of the variance under-
estimation.

3. We propose a semi-parametric variance estimation formula
that is applicable to many randomization processes, includ-
ing cases where the exact randomization mechanism is un-
known. This formula can be applied to most real-world cases,
and is straightforward to implement.

4. Our work was motivated by problems in online experiments.
We applied the general variance formula on various random-
ization mechanisms and provide thorough simulation and real
experiment examples. We believe the answers and solutions
for these questions will be useful for many people running
A/B tests and enable researchers to easily extend the idea be-
hind our general variance formula to even more complicated
scenarios.

The rest of the paper is structured as follows. After reviewing
related work in the literature, we present our answer of Question 1
in Section 3 where a connection between the i.i.d. assumption and
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external validity is made. Simulation study is presented to illustrate
the idea. We then propose a general variance estimation formula in
Section 4 and show how this formula nicely resolves Question 2
and 3, with the latter discussed further in Section 5 using a real-life
experiment example. Section 6 concludes with final remarks and
points to future works.

2. RELATED WORKS
The related issue of naively assuming the analysis unit is i.i.d.

yielding a severe under-estimation of variance when this unit is
not the same as the randomization unit has been previously doc-
umented [20; 33; 5]. In web site A/B testing this problem shows up
most commonly user-randomized experiments for page-view anal-
ysis unit metrics. Previous work to correct this under-estimation
assumed the randomization unit (user) is i.i.d. and used the delta
method to compute the correct variance. The randomization unit
(or experiment unit) is alluded to in these papers as an important
unit to reason about i.i.d.. However there is no formal mention of
the RUP in these works nor is there an attempt to prove it. [10]
studied the randomization by page-view problem under a model
with some restricted assumptions and managed to prove the prin-
ciple only when there is no treatment effect (e.g. AA-tests). Their
results are a special case of our results in this paper.

Instead of relying on a simple i.i.d. data generating process, Bak-
shy and Eckles [2] employed a two way random effect user-item
model. They used Pigeonhole bootstrap [27] to estimate the cor-
rect variance for their average treatment effect estimator. In their
problem the randomization unit was user, and the authors presented
simulation studies comparing the user i.i.d. sample variance, item
i.i.d. sample variance, and the bootstrap method variance. Our
view in Section 3 is related to the random effect model.

3. I.I.D. ASSUMPTIONS AND EXTERNAL
VALIDITY

In probability theory, independence is clearly defined. In plain
speech, if two events are independent, knowing that one of those
events occurred in no way affects the probability of the other event
occuring. In practice, independence is rarely absolute and instead
depends on context. Imagine there is an urn filled with numbered
balls. You pull a ball from the urn, read its number, and place it
back in the urn. If you do this repeatedly, are the outcomes inde-
pendent? Surprisingly, such a seemingly simple question does not
have a definitive answer. If the outcomes are independent, then pre-
vious outcomes have no predictive power for the next outcome. If
you have no prior knowledge of the distribution of the numbers on
the balls in the urn, then as you see more balls you develop a better
understanding of this distribution and therefore a better prediction
for the next outcome. In this view the outcomes are dependent.
Alternatively, assume you know the distribution of the numbers on
the balls (e.g., uniform from 1 to 500). Then pulling balls from the
urn with replacement bears no new information, and the outcomes
are independent. To summarize, the observed numbers are con-
ditionally independent given the distribution, but unconditionally
dependent. See [34; 25; 4] for more on conditional independence
vs. independence.

Let us now think about Question 1 and treating users as i.i.d..
Users can be correlated by various factors such as gender, age, oc-
cupation, etc. Let us take gender as an example. It is known that the
heights of men and women follow different distributions (see Fig-
ure 1). When the proportion of men and women in the population
is treated as fixed, we can create the overall adult height distribu-
tion from the two gender specific distributions by weighting by the

gender ratio. From this point of view, heights of randomly sampled
adults are i.i.d. originating from a single mixture distribution – the
“All Adults” density in Figure 1. The observed heights are con-
ditionally independent given the gender mixture. We might then
extend this reasoning to other factors and convince ourselves that
the i.i.d. assumption for users is reasonable.

But what justifies treating the gender mixture as fixed? What if
we want to make inferences about subsets of the population that
may have different gender ratios? Really, we want to know if treat-
ing the gender ratio as fixed will affect the external validity of infer-
ences made from the data. In A/B tests, external validity often con-
cerns bias resulting from differences between the population from
which the inference was drawn and the population upon which the
inference is applied. When extending externally, inferences can
be made invalid due to an under-estimation of uncertainty. Imag-
ine that we sample students from 2 of 20 local 7th grade classes
at random to estimate the average height of all local 7th graders.
We assume that the height distributions of boys and girls in the 20
schools are the same. If we also assume the gender ratios in the 20
schools are fixed, then we can assume heights of sampled students
are i.i.d. from a single mixture distribution and form a confidence
interval for the mean of height. But what if even though the gender
ratio is close to 50/50 in the whole school district, there exists large
differences in gender ratios at different schools? Then it is possi-
ble that the two randomly chosen schools have significantly more
boys than girls, or vice versa. Under this scenario the confidence
interval we get by assuming a fixed gender ratio and i.i.d. heights is
too narrow because it does not account for the variability of gender
ratios among the 20 schools. To make the result externally valid,
we must treat gender ratio as a random variable.

We use the following simulation to illustrate this point. Table 1
shows female and male student counts in 20 hypothetical schools.
It is constructed such that:

1. Each school has exactly 1,000 student.
2. School #1 has 690 female and 310 male students. Each in-

cremental school has 20 fewer females and 20 more males
than the previous school. School #20 has 310 female and
690 male students.

3. In total, the gender ratio is balanced with exactly 10,000 fe-
male students and 10,000 male students.

We generate male heights from a normal distribution with mean
175 cm and standard deviation 10 cm. Female heights are gener-
ated from a normal distribution with mean 160 cm and standard
deviation 10 cm. This simulated data is assumed to be the true
heights for each of the 20,000 students. In this dataset, the true
average height over the 20,000 students is 167.46. The goal is to
sample 200 students out of the 20,000 students to estimate the av-
erage height.

Figure 1: Mixture distribution for adult height. Source:
cacm.acm.org
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Table 1: Female and male students configuration in a hypothetical
20 school district.

School Female Count Male Count
1 690 310
2 670 330
3 650 350
4 630 370
5 610 390
· · ·

· · · · · ·

15 410 590
16 390 610
17 370 630
18 350 650
19 330 670
20 310 690

Table 2: Comparison of 4 sampling mechanisms. The first is a
random sample from all students; the other 3 cases select 2, 5 and
10 schools respectively and then sample students from the chosen
schools. Results show that the standard variance formula (assuming
i.i.d. samples) under-estimates the true variance and gives lower
coverage than the promised 95% level.

Case # School Coverage SE with standard formula True SE

1 20 0.949 0.879 0.880
2 2 0.753 0.877 1.446
3 5 0.866 0.878 1.141
4 10 0.916 0.879 0.976

Table 2 shows the results from the 4 sampling methods. In Case
1 we randomly sample 200 students from the combined 20,000 stu-
dents. For Cases 2 to 4, we use a two-stage sampling. For Case 2
we first sample 2 schools from the 20 schools, and then sample 100
students from each of the 2 chosen schools. In cases 3 and 4 we
sample 5 and 10 schools, then 40 students and 20 students for each
chosen school, respectively. In all cases we sample 200 students.
For each case, after we sampled 200 students, we compute the sam-
ple average and also standard deviation from the standard variance
formula assuming i.i.d. samples. We use that to compute the 95%
confidence interval and record whether the true average 167.46 was
within the interval. We repeated this process 2,000 times and then
compute the coverage, average estimated standard error from the
standard formula, and standard deviation of the 2,000 sample av-
erages (which approximates the true standard error of the mean).
Table 2 shows that case 1 has the correct coverage at 95% and the
standard variance formula produces a standard error that is very
close to the truth. In all other cases, coverages are all lower than the
promised 95%, true standard errors are all larger than those given
by standard formula, confirming variance under-estimation. In fact,
in all cases the standard formula gives very similar standard errors.
This is because it assumes i.i.d. sampled heights. However, when
samples are from a small number of randomly selected schools,
there is extra variation in the population due to the fluctuation of
gender ratio, making the true standard error larger than under the
i.i.d. assumption. We saw as the number of schools sampled in
the first stage increased from 2 to 10, the true standard deviation
decreased and coverage got better. In cases 2-4, if we assume sam-
ples are i.i.d. and use the standard variance formula, then we can
only estimate the average height for the chosen schools and can-
not extend the estimate to all 20 schools. If we want to make the

extended estimation, we need to correctly account for additional
“between school” variance.

To summarize, in reality users are often correlated by many fac-
tors. As long as the variation in the joint distribution of these factors
is not a concern, and we understand that external validity might not
hold if we apply the result to another population where the joint
distribution is different, then we can treat this unit i.i.d. In online
A/B tests, practitioners understand that using today’s results to pre-
dict tomorrow’s behavior is not perfect. The belief is that some
small differences between the near future and the present will not
be a big concern because we will keep iterating. By connecting the
i.i.d. assumption with external validity, we now understand that the
i.i.d. assumption is ultimately not justified by theory, but by choice.

There are notable exceptions in A/B tests and field experiments
where i.i.d. assumptions for user should not be made because of
external validity concerns. One example is when sampling a subset
of geo-locations, or user clusters (organizations, etc.). Another ex-
ample is in a user-item model where we do not want to treat item
mixtures as fixed [2].3

4. A UNIFIED VARIANCE FORMULA
Knowing when and when not we can assume users i.i.d. is just

the beginning. There are two important units, one is the random-
ization unit and the other is the analysis unit. The analysis unit
is typically the denominator in a metric, e.g. page-view for page-
click-rate and revenue-per-search, session for session-success-rate,
etc. If we order different levels in a hierarchy, the randomization
unit should always be higher or equal to the analysis unit. For ex-
ample, any user-level metric would be ill-defined under page-level
randomization, because the same user might be exposed to both
the treatment and control. User is the most popular randomization
unit because user is assumed to be a smallest unit of autonomy and
randomizing by user keeps user experience consistent during the
experiment. At the same time, as argued in Section 3, assuming
i.i.d. users is reasonable in most cases. Since metrics are defined
by observations at the analysis unit level, if the analysis unit is also
user, then the interpretation of results is straightforward.

However, the majority of metrics in A/B testing are not user
based, and user is not the only randomization unit being used. For
instance, page-view randomized experiments are often used when
results are not expected to be consistent over the course of the ex-
periment (e.g. ad-related experiments). Denote individual, ran-
domization, and analysis units by I, R and A. We define the indi-
vidual unit as the level at which we can assume i.i.d.; this is typi-
cally the user level, but is not required to be. In general these three
units can all be different as long as I ≥ R ≥ A where ≥ means
higher than or equal to in the hierarchy.

In this section we provide a unified variance formula that is ap-
plicable for all choices of R varying between I and A including
when R is unknown. We introduce the following notation to facil-
itate the flow. WLOG, here we take user as I and page-view as
A. The same hierarchy can be straightforwardly mapped to other
domains.

4.1 Variance Estimation
Let i = 1, . . . n be the index of users. We adopt the potential

outcomes framework [26; 28] to formalize our data-generation pro-
cess. Under the Stable Unit Treatment Value Assumption [29] there
3The discussion here is closely related to the fixed effect vs. ran-
dom effect in statistics and econometrics. Even in [2] the user as
i.i.d. assumption is still practically very reasonable, unless in ex-
treme cases where between item variances are large and also highly
correlated with treatment effect.
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is only one version of the treatment and no treatment interference
among the users (I). Let Ni be the number of page-views (A).

Let Wi = (Wi1, . . . ,Wi,Ni )
′ denote the treatment assignment vec-

tor for user i, where Wi j = 1 if occurrence j is assigned to treatment
and 0 otherwise. The observed outcome of occurrence j is

Yobs
i j = Wi jYi j(1) + (1 −Wi j)Yi j(0) ( j = 1, . . . ,Ni),

and the numbers of occurrences assigned to treated and control are

NiT =

Ni∑
j=1

Wi j, NiC = Ni − NiT .

Note that we did not specify how Wi j is generated. We want our re-
sult to be valid for general randomization without needing to know
the mechanism. This will be extremely important for solving Ques-
tion 3.

To estimate the average treatment effect τ, let

S iT =

Ni∑
j=1

1{Wi j=1}Yobs
i j , S iC =

Ni∑
j=1

1{Wi j=0}Yobs
i j

then the treatment and control metrics Ȳobs
T and Ȳobs

C are

Ȳobs
T =

∑n
i=1 S iT∑n
i=1 NiT

, Ȳobs
C =

∑n
i=1 S iC∑n
i=1 NiC

.

Let µi = EYi j(0) be user i’s mean outcome when assigned to con-
trol. And τi = E(Yi j(1)−Yi j(0)) be her individual average treatment
effect. Let the average number of page-views be N = E(Ni).

Using this notation, the mean outcome for control group and the
average treatment effect are

µ =
E(NiC · µi)

E(NiC)
τ =

E(NiT · τi)
E(NiT )

and the point estimators of N, µ and τ are

N̂ = n−1
n∑

i=1

Ni, µ̂ = Ȳobs
C , τ̂ = Ȳobs

T − Ȳobs
C .

We derive the asymptotic variance of τ̂ under three mild assump-
tions.
1.Randomization: E(NiT |Ni) = pNi with p fixed.
2.DGP: (S iT , S iC ,NiT ,NiC , µi, τi), i = 1, . . . , n are i.i.d.
3.Stable Denominator: Treatment does not impact the count of
analysis unit A. This is why we do not need to consider a pair
(Ni(1),Ni(0)) and only use Ni.

Let’s see why these three assumption are naturally satisfied. In
A/B tests we always have fixed traffic splitting. Even when we do
not know the randomization mechanism, it is reasonable to assume
that the number of page-views assigned to treatment is expected to
be p of the total. For each user, if the experiment is randomized
by user NiT ∼ NiBernoulli(p), e.g. all or nothing with probabil-
ity p. If randomized by page-view, NiT ∼ Binomial(Ni, p). This
assumption is also true for unknown randomization mechanism as
in Question 3. The second assumption assumes i.i.d. at individual
level. If users can be assumed i.i.d., we can let I be user level.
Otherwise based on our discussion in Section 3 we can usually find
some other independent unit. The last assumption is not a concern
because metrics defined on a certain analysis unit are designed to
use analysis unit as a normalization factor to highlight changes in
the numerator. If a treatment impacts the denominator, this metric
should not be used in decision making [9].

We are now ready for the main theorem:

Theorem 1. The asymptotic variance of τ̂ is

Varasy (̂τ) =
1
n

Var
{

S iT − NiT · (µ + τ)
pN

−
S iC − NiC · µ

(1 − p)N

}
. (2)

Theorem 1 is related to the statistical inference of the ratio esti-
mator in survey sampling [6], and has several theoretical and prac-
tical advantages. First, it is universal; it is not only applicable to
a wide range of randomization mechanisms, but it is also agnostic
to the actual randomization mechanism, helping reduce computa-
tional overhead. In particular, this theorem holds even when the
randomization mechanism is unknown or varies among subjects.
Second, it is robust; it depends only on the aforementioned mild as-
sumptions. Third, it is actionable; it is straightforwardly estimable
by its finite-sample analogue

V̂arG (̂τ) =
1
n

V̂ar
S iT − NiT · (̂µ + τ̂)

pN̂
−

S iC − NiC · µ̂

(1 − p)N̂

 , (3)

henceforth referred to as the “general” formula. By the Law of
Large Numbers, as n→ ∞

n{V̂arG (̂τ) − Varasy (̂τ)}
a.s.
−→ 0.

Theorem 1 follows easily from the following Lemma, whose
proof together with proof of Theorem 1 can be found in the ap-
pendix.

Lemma 2. Let

τ̃ =

∑n
i=1

∑
j:Wi j=1(Yobs

i j − µ − τ)

npN

−

∑n
i=1

∑
j:Wi j=0(Yobs

i j − µ)

n(1 − p)N
+ τ,

then
√

n(̃τ − τ̂)
D
−→ 0.

4.2 Existing Methods and the Randomization
Unit Principle

Theorem 1 is a unified formula for different choices of the ran-
domization unit R. There are established variance estimation meth-
ods used in industry, namely standard sample variance formula and
the “delta-method”. The standard sample variance formula sees
Ȳobs

T and Ȳobs
C as the sample averages of two i.i.d. random variables

independent of each other.

V̂arS (̂τ) = λ2
T + λ2

C , (4)

where

λ2
T =

1
(
∑n

i=1 NiT )2

n∑
i=1

∑
j:Wi j=1

(Yobs
i j − Ȳobs

T )2,

λ2
C =

1
(
∑n

i=1 NiC)2

n∑
i=1

∑
j:Wi j=0

(Yobs
i j − Ȳobs

C )2;

The assumption behind the standard sample variance formula is
satisfied when I = R = A because we assume I is i.i.d.. In prac-
tice it is common to set I = R = user. However for many metrics
A is different from user, e.g. page-view. In this case, using the
standard formula will under-estimate the variance because page-
views are wrongly assumed to be i.i.d.. When the randomization
unit is strictly at lower in the hierarchy than user, we need to use
the “delta-method”

V̂arD (̂τ) = n−1(ξ2
T + ξ2

C), (5)
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where

ξ2
T =

1

(ÊNiT )2
V̂ar(S iT ) +

(ÊS iT )2

(ÊNiT )4
V̂ar(NiT )

−2
ÊS iT

(ÊNiT )3
Ĉov(S iT ,NiT )

and ξ2
C defined similarly by replacing T with C.

As we can see, these two existing methods only covers two cases:
1) I = R = A and 2) I = R > A where user is commonly chosen
as both I and R. In practice, choosing a randomization unit other
than user is becoming more common because user experience con-
sistency is oftentimes not a design requirement. Exposing the same
user to both treatment and control achieves an effect of “pairing”
(as in a paired two-sample test) and thus produces higher statistical
power. This lead us to the third case: 3) I > R = A. The stan-
dard sample variance formula (4) is widely used in industry for this
case. Because the standard sample variance requires A to be i.i.d.,
the use of (4) for the third case is based on a rule of thumb that the
randomization unit can be treated as i.i.d.. We refer to this rule of
thumb as RUP – the Randomization Unit Principle.

Armed with Theorem 1, we have a general formula (3) that han-
dles all three of the above cases and more. The following Corollary
shows (3) and the “delta method” (5) are equivalent for case 2).

Corollary 3. When I = R > A, as n→ ∞,

n{V̂arD (̂τ) − V̂arG (̂τ)}
a.s.
−→ 0.

We see (3) and (5) asymptotically give the same estimation of vari-
ance even though their appearances are quite different. More inter-
esting is the next result in which we evaluate the RUP.

Corollary 4. When I > R = A, as n→ ∞,

n{V̂arS (̂τ) − V̂arG (̂τ)}
a.s.
−→ −E{Ni(Ni − 1)(τi − τ)2}/N2. (6)

This result is very interesting and surprising at first. What Corol-
lary 4 says is that the RUP is wrong! There will always be an under-
estimation of variance when we treat page-views as i.i.d. even when
we randomize by page-view. This is surprising because the stan-
dard sample variance formula (4) has been used in practice with a
long history. If there is a variance under-estimation, should it not
already be known? Variance under-estimation leads to Type-I error
inflation; how did experiments analyzed assuming RUP pass AA
tests?

We make the following observations about the correction term
E{Ni(Ni − 1)(τi − τ)2}/N2 in (6):

1. τi is the individual treatment effect. When there is no vari-
ance between individuals, this term is 0. As a special case,
when there is no treatment effect, this term is 0.

2. With extra derivation omitted here, we can show the asymp-
totic variance of τ̂ is on the order of E{Ni(µi −µ)2}/N2. Com-
paring this to the correction term, we see that if the variance
of τi is much smaller than the variance of µi, then the correc-
tion term relative to the true variance is small.

3. Assuming a constant multiplicative treatment effect of x%,
the variance of τi is x%2 the variance of µi. A rough estima-
tion of the under-estimation is x%2 × E(Ni).

These observations are very useful. It shows that even though RUP
is not true in theory, in practice using the standard formula moti-
vated by RUP when R = A generates a variance close to the true
one as long as the treatment effect is small. It is worth noting that
when there is a large treatment effect, rejecting the null hypothesis
is the desired outcome and variance under-estimation does not lead

to false positive. Nevertheless, there might be cases where the av-
erage treatment effect τ is 0 or close to 0 but τi has large variance.
In this case under-estimating variance by assuming RUP will lead
to more false positive. In the next section we use simulation studies
to further support our results.

4.3 Simulation Study
To examine the finite-sample performance of our methodology,

we conduct a series of simulation studies. In this study, we set I
to be user andA to be page-view. We introduce an additional level
“session” so the randomization unit R can vary from user to ses-
sion and to page-view. This additional session level serves as an
unknown randomization unit, e.g. by-hour randomization with ex-
tra complexities as motivated by an actual mobile app experiment.

We let p = 1/2 so treatment and control are 50/50, and we let
the sample size be n = 10000. For user i = 1, . . . , n let the number
of sessions be Li ∼ 1 + Pois(3), and for each session, simulate the
number of page-views from

Ril ∼ 1 + Pois(3) (l = 1, . . . , Li).

We consider six simulation cases:
1. Cases 1–3 are indexed by the parameter σ ∈ {0, 1/2, 1}. We
generate the potential outcomes by a Normal model, where µi ∼

N(0, 1) and τi ∼ N(0, σ2), and

Yi j(1) | µi, τi
iid
∼ N(µi + τi, 1), Yi j(0) | µi, τi

iid
∼ N(µi, 1)

2. Cases 4–6 are indexed by the parameter ξ ∈ {0, 1/4, 1/2}. We
generate the potential outcomes by a Bernoulli model. Let µi ∼

Uni f (0, 1/2) and τi ∼ Uni f (0, ξ), and

Yi j(1) | µi, τi
iid
∼ Bern(µi + τi), Yi j(0) | µi, τi

iid
∼ Bern(µi).

The parameters σ and ξ quantify the variation of the treatment ef-
fect, formally defined as TEV = sd(τi)/sd(µi). To be specific, for
Cases 1–3 we have TEV= σ, and for Cases 4–6 we have TEV= 2ξ.
In particular, Case 1 (σ = 0) and Case 4 (ξ = 0) correspond to A/A
tests. For each case, we consider the three randomization units of
page, session, and user. For each randomization mechanism, we
evaluate the performances of the three variance formulas (4), (5)
and (3) over 3000 repeated samplings. To be specific, we obtain
3000 point estimates of the treatment effect, whose empirical stan-
dard deviation resembles the “true” standard deviation of the treat-
ment effect estimator. In the meanwhile, by applying each variance
formula we obtain 3000 estimated standard deviations, whose av-
erage characterizes the performance of the corresponding formula.

The simulation results are in Table 3, from which we can draw
several conclusions. First, the standard formula works well in A/A
tests when randomizing by page (RUP works), but under-estimates
the true variance and under-covers the true parameter in other cases,
confirming Corollary 4. The under-coverage of the confidence in-
terval is more severe for the last case in each sub-table correspond-
ing to a treatment effect with large variation, and is minor in the
middle case when the treatment effect variation is smaller. Second,
the delta-method formula works well for A/A and A/B tests when
randomizing by user, but over-estimates the true variance and over-
covers the true parameter in other cases, confirming Corollary 3.
Third, the general formula correctly estimates variances and pro-
duces desirable coverage rates, for both potential outcome models,
all randomization mechanisms, and both A/A and A/B tests.
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Table 3: Simulation results for Normal and Bernoulli potential out-
come models. In each sub-table, the first four columns contain the
case label, randomization mechanism, treatment effect variation
(TEV) and “true” standard deviation evaluated by 3000 repeated
samplings, the next three columns contain the average standard er-
rors of the point estimator of the standard (“S”), general (“G”) and
delta-method (“D”) formula by the 3000 repeated samplings, and
the last three columns contain the coverage rates of the 95% confi-
dence intervals for the parameter τ. Sub-cases in each sub-table are
ordered by the magnitude of treatment effect variation, with the first
case being A/A, the second a treatment effect with small variation
and third a treatment effect with large variation.

(a) Normal

Case randomization TEV sd(̂τ) asdS asdG asdD coverS coverG coverD

1 Page 0.000 0.007 0.007 0.007 0.017 0.951 0.950 1.000
1 Session 0.000 0.012 0.007 0.012 0.018 0.750 0.952 0.997
1 User 0.000 0.023 0.007 0.023 0.023 0.467 0.943 0.943
2 Page 0.500 0.009 0.007 0.009 0.018 0.876 0.943 1.000
2 Session 0.500 0.013 0.007 0.013 0.019 0.711 0.949 0.995
2 User 0.500 0.024 0.007 0.024 0.024 0.444 0.952 0.952
3 Page 1.000 0.014 0.008 0.013 0.020 0.750 0.951 0.996
3 Session 1.000 0.017 0.008 0.017 0.022 0.635 0.947 0.988
3 User 1.000 0.028 0.008 0.028 0.028 0.419 0.955 0.955

(b) Bernoulli

Case Randomization TEV sd(̂τ) asdS asdG asdD coverS coverG coverD

4 Page 0.000 0.002 0.002 0.002 0.003 0.954 0.955 0.994
4 Session 0.000 0.003 0.002 0.003 0.003 0.898 0.948 0.990
4 User 0.000 0.004 0.002 0.004 0.004 0.742 0.952 0.952
5 Page 0.500 0.002 0.002 0.002 0.003 0.938 0.953 0.996
5 Session 0.500 0.003 0.002 0.003 0.003 0.885 0.949 0.985
5 User 0.500 0.004 0.002 0.004 0.004 0.739 0.954 0.954
6 Page 1.000 0.003 0.002 0.003 0.004 0.898 0.950 0.983
6 Session 1.000 0.003 0.002 0.003 0.004 0.849 0.955 0.978
6 User 1.000 0.004 0.002 0.004 0.004 0.697 0.953 0.953

5. A/B TESTING WITH UNKNOWN RAN-
DOMIZATION MECHANISM

We apply our newly-proposed method to a series of experiments
from Skype, a leading messaging and VoIP mobile app by Mi-
crosoft. We focus on two real metrics that are important measures
of user engagement and product quality: call duration, i.e., length
of a call (in seconds), and call-dropped-rate, i.e., whether the call is
disconnected due to software related issues. As mentioned in Ques-
tion 3, hourly polling on the client side is implemented to fetch
treatment assignment, along with numerous additional complexi-
ties to allow the client to delay configuration refresh. The analysis
unit here is the call4 and the randomization unit is obscured. These
complexities pose no challenges to Theorem 1 since the result is
general enough to work for an unspecified randomization unit R.

120 real A/A experiments were run, with durations of two weeks,
and the numbers of randomization units (i.e., users) more than one
million. To thoroughly examine the impacts of the three variance
estimation methods on p-value calculation and decision-making,
we adopt the variance formulas (4), (5) and (3) to calculate the
three variance estimates of the treatment effect estimators and cor-
responding p-values for the 120 experiments. Assuming no treat-
ment effect and accurate variance estimation, the p-values would
follow a standard uniform distribution. Therefore, we conduct K-S
tests [31] to compare the empirical densities of the p-values by the
standard, delta-method, and general formulas against the standard
uniform density, and calculate the proportion of p-values less than
0.05.

4To be precise it is a call-leg as each call has both a caller and re-
ceiver. By only considering the call-legs, we can by-pass the more
complex social network setting.

The results suggest that the general formula is optimal. To be
specific, for call duration, the proportion of p-values by the stan-
dard, delta-method and general formulae that are smaller than 0.05
are 8.33%, 1.67%, and 5.00% respectively, and the K-S tests yield
p-values of 0.144, 0.101, and 0.799 respectively. For is call dropped,
the proportions of p-values by the standard, delta-method, and gen-
eral formulae smaller than 0.05 are 15.83%, 1.67%, and 4.17% re-
spectively, and the K-S tests yield p-values of 0.000, 0.132, and
0.279 respectively.

The above observations are not limited to only the two metrics
described. Figure 2 shows the histogram of p-values for 10 different
metrics from those 120 A/A experiments. We can see the standard
sample variance formula (4) produces too many small p-values,
while the “delta method” (5) gives p-value skewed to the right. The
general formula (3) shows a reasonable shape resembling a sample
histogram from uniform distribution. The K-S tests yield p-values
of 0 for the standard formula, 0.003 for the “delta method” for-
mula, and 0.152 for the general formula. In other words, only the
standard formula produces p-values that are truly uniform.

Figure 2: Histogram of p-values for 20 metrics in 120 A/A exper-
iments combined. From left to right p-values are computed with
variance estimation using the “delta method” (5), the general vari-
ance formula (3), and the standard sample variance formula (4).

6. CONCLUDING REMARKS
Many A/B tests are analyzed assuming by-user randomization

guarantees i.i.d. samples. The standard sample variance formula is
used for variance estimation, and the classic two-sample test is di-
rectly applied. However in real-life industrial A/B testing random-
ization mechanisms are more complex, and randomization units
different from user are widely used, making variance estimation
for the two-sample test challenging. Mobile experimentation adds
more difficulty to this problem by uncontrollable client side behav-
ior that can obscure the actual randomization mechanism. Above
all these challenges, even the very basic user i.i.d. assumption has
not been well justified in previous works.

Motivated by the need for a deeper understanding of the issue
and a “unified” solution, we proposed a variance estimation method
that only relies on practically plausible assumptions and is applica-
ble to a wide range of randomization mechanisms. We also made a
deep connection between the i.i.d. assumption and external validity
– two seemingly unrelated concepts. We illustrate our thoughts and
the unified variance formula by answering 3 challenging questions
arise from real-life A/B testing. Detailed simulation and empirical
results are included for each solution.

There are multiple possible future directions based on our current
work. First, we can extend our current framework to re-randomization
[23; 24]. Second, it is possible to derive parallel results for multi-
arm experiments or factorial designs. Third, it would be interesting
to incorporate the idea of covariate adjustment [6; 21] into our cur-
rent framework. Fourth, we need to propose the Bayesian counter-
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part of the current framework. All of the above are our ongoing or
future research projects.
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APPENDIX
We provide proofs of Lemma 2, Theorem 1.

Proof of Lemma 2. First note that

τ̂ =

∑n
i=1

∑
j:Wi j=1(Yobs

i j − µ − τ)∑n
i=1 NiT

−

∑n
i=1

∑
j:Wi j=0(Yobs

i j − µ)∑n
i=1 NiC

+ τ.

Therefore
√

n(̃τ − τ̂)

=
√

n

∑n
i=1

∑
j:Wi j=1(Yobs

i j − µ − τ)∑n
i=1 NiT

(∑n
i=1 NiT

npN
− 1

)
−
√

n

∑n
i=1

∑
j:Wi j=0(Yobs

i j − µ)∑n
i=1 NiC

{ ∑n
i=1 NiC

n(1 − p)N
− 1

}
.

Since

E(S iT ) = E{NiT (µi + τi)} = pE{Ni(µi + τi)}.

and E(NiT ) = E{E(NiT | Ni)} = pN, by Law of Large Numbers∑n
i=1 S iT∑n
i=1 NiT

a.s.
−→ µ + τ,

as n −→ ∞, which implies that∑n
i=1

∑
j:Wi j=1(Yobs

i j − µ − τ)∑n
i=1 NiT

a.s.
−→ 0.

Additionally,

√
n
(∑n

i=1 NiT

npN
− 1

)
=

√
n

pN

n−1
n∑

i=1

NiT − pN


D
−→ N

{
0,Var(NiT )/(pN)2

}
.

By Slutsky’s Theorem,

√
n

∑n
i=1

∑
j:Wi j=1(Yobs

i j − µ − τ)∑n
i=1 NiT

(∑n
i=1 NiT

npN
− 1

)
D
−→ 0,

and similarly

√
n

∑n
i=1

∑Ni
Wi j=1(Yobs

i j − µ)∑n
i=1 NiC

{ ∑n
i=1 NiC

n(1 − p)N
− 1

}
D
−→ 0,

which completes the proof.

Proof of Theorem 1. By Lemma 2 we have nVar(̂τ) = nVar(̃τ).
Then note that

τ̃ = n−1
n∑

i=1

{
S iT − NiT (µ + τ)

pN
−

S iC − NiCµ

(1 − p)N

}
+ τ.

and the fact that
S iT − NiT (µ + τ)

pN
−

S iC − NiCµ

(1 − p)N
(i = 1, . . . , n)

are i.i.d. random variables, because all the components, i.e., S iT ’s,
S iC’s, NiT ’s and NiC’s are i.i.d. Therefore the proof is completed.
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